The Speed of Sound and Attenuation of an IEC Agar-Based Tissue-Mimicking Material for High Frequency Ultrasound Applications

نویسندگان

  • Chao Sun
  • Stephen D. Pye
  • Jacinta E. Browne
  • Anna Janeczko
  • Bill Ellis
  • Mairead B. Butler
  • Vassilis Sboros
  • Adrian J.W. Thomson
  • Mark P. Brewin
  • Charles H. Earnshaw
  • Carmel M. Moran
چکیده

This study characterized the acoustic properties of an International Electromechanical Commission (IEC) agar-based tissue mimicking material (TMM) at ultrasound frequencies in the range 10-47 MHz. A broadband reflection substitution technique was employed using two independent systems at 21°C ± 1°C. Using a commercially available preclinical ultrasound scanner and a scanning acoustic macroscope, the measured speeds of sound were 1547.4 ± 1.4 m∙s(-1) and 1548.0 ± 6.1 m∙s(-1), respectively, and were approximately constant over the frequency range. The measured attenuation (dB∙cm(-1)) was found to vary with frequency f (MHz) as 0.40f + 0.0076f(2). Using this polynomial equation and extrapolating to lower frequencies give values comparable to those published at lower frequencies and can estimate the attenuation of this TMM in the frequency range up to 47 MHz. This characterisation enhances understanding in the use of this TMM as a tissue equivalent material for high frequency ultrasound applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel tissue mimicking materials for high frequency breast ultrasound phantoms.

The development and acoustical characterisation of a range of novel agar-based tissue mimicking material (TMMs) for use in clinically relevant, quality assurance (QA) and anthropomorphic breast phantoms are presented. The novel agar-based TMMs described in this study are based on a comprehensive, systematic variation of the ingredients in the International Electrotechnical Commission (IEC) TMM....

متن کامل

The Ability of Ultrasonic Characterization to Extract the Dose Distribution of MAGIC-f Polymer Gel

Background & Aims: Today, different imaging techniques have been studied in the reading of radiationsensitive polymer gels dosage. Due to limitations of imaging techniques such as magnetic resonance imaging (MRI) and computed tomography (CT), ultrasound techniques are proposed for dose-dependent parameter extraction. In this study, using MAGIC-f (methacrylic and ascorbic acid in gelatin initiat...

متن کامل

اثرغلظت‌های مختلف ژلاتین در دز 36 گری پرتوهای گاما بر پارامترهای فراصوتی ژل پلیمر MAGIC-f

The aim of this study is to evaluate the effect of edible gelatin concentration as a polymerization agent on MAGIC-f polymer gel dose-response sensitivity irradiated by 1.25 MeV energy of cobalt-60. To investigate the dose-dependent polymerization, ultrasonic parameters of propagation speed of sound and broadband ultrasound attenuation coefficient were evaluated. To read-out of the radiation-in...

متن کامل

Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials.

A form of tissue-mimicking material is reported in which oil droplets are dispersed in a water-based gelatin. Broad ranges of ultrasonic parameters, including speed of sound, attenuation coefficient, density and backscatter level, exist for this material. Very important, the attenuation coefficients are nearly proportional to the frequency as in the case of mammalian tissue and the available at...

متن کامل

Generating and Focusing the Ultrasound Waves Using Elastomer-based Capacitive Micro-Speakers

Ultrasound wave is a kind of waves with the frequency higher than the human audible frequency. Although ultrasound was first used for military identification purposes, it has been used for decades for various other applications, especially medical applications. Medical applications of ultrasound include diagnostic and therapeutic applications, such as for the treatment of cancer. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2012